Eigenvalue and Percentage of Variance

Scree Plot of the Eigen value after Applying Factor Analysis on Mixed Data
Scree Plot of the Eigen value after Applying Factor Analysis on Mixed Data

Representing Eigenvalue of each component after applying Factor Analysis on Mixed Data 

Component

Eigenvalue

Percentage of variance

Cumulative percentage of variance

Component 1

3.942855744

12.63045421

12.63045421

Component 2

3.242122103

10.38574004

23.01619424

Component 3

1.948503724

6.241792412

29.25798666

Component 4

1.706482437

5.466506938

34.7244936

Component 5

1.517305863

4.860503013

39.58499661

Component 6

1.364363672

4.370571485

43.95556809

Component 7

1.180668503

3.782126568

47.73769466

Component 8

1.149895886

3.683550267

51.42124493

Component 9

1.117250276

3.578974065

55.00021899

Component 10

1.081252593

3.46365991

58.4638789

Component 11

1.011256374

3.239435616

61.70331452

Component 12

0.978518814

3.134564861

64.83787938

Component 13

0.892754778

2.859830305

67.69770968

Component 14

0.876076998

2.806405085

70.50411477

Component 15

0.821221816

2.630683244

73.13479801

Component 16

0.78881207

2.526862602

75.66166062

Component 17

0.748254258

2.396940632

78.05860125

Component 18

0.717903036

2.299714221

80.35831547

Component 19

0.669173493

2.143615113

82.50193058

Component 20

0.640936806

2.053162353

84.55509294

Component 21

0.613905437

1.966570683

86.52166362

Component 22

0.572515038

1.833981622

88.35564524

Component 23

0.56019358

1.794511345

90.15015659

Component 24

0.518356352

1.660490921

91.81064751

Component 25

0.495950715

1.588717216

93.39936472

Component 26

0.430071199

1.377680274

94.777045

Component 27

0.393661732

1.261047018

96.03809202

Component 28

0.335047621

1.07328391

97.11137593

Component 29

0.320808694

1.027671257

98.13904718

Component 30

0.231278665

0.740872804

98.87991999

Component 31

0.18555584

0.594405348

99.47432534

Component 32

0.120508672

0.386034734

99.86036007

Component 33

0.018837396

0.060343286

99.92070335

Component 34

0.018388369

0.058904882

99.97960824

Component 35

0.006365708

0.020391764

100

Component 36

1.01E-30

3.22E-30

100

Component 37

8.65E-31

2.77E-30

100

Component 38

4.52E-31

1.45E-30

100

Component 39

3.29E-31

1.05E-30

100

Component 40

1.93E-31

6.18E-31

100

Component 41

1.36E-31

4.35E-31

100

Component 42

9.10E-32

2.92E-31

100

Component 43

2.38E-32

7.63E-32

100

According Kaiser criterion’s principle , eleven components have been elicited from the group due to the Eigen value > 1.

Kaiser criterion: The Kaiser rule is to drop all components with eigenvalues under 1.0 – this being the eigenvalue equal to the information accounted for by an average single item.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s